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Abstract - In this research it is demonstrated that there is an existing universal set of elementary gates, which can emulate any other operation. The 
universal set of quantum operators is sufficient to satisfy all computational needs. In this formal research are reviewed the basic quantum gates 
and is demonstrated why they form an universal quantum gate. This particular set of operators is examined because some of the difficulty 
simulating quantum concepts are distributed evenly between those gates.  

Index Terms— boolen function, circuit, composition, encoding, gate, quantum.   

——————————      —————————— 

1 INTRODUCTION                                                                     

In the classical computers some groups of basic operations 
are functionally complete. By combining and recombining such 
set of operations, it is possible to implement each one operation. 
For example the NAND gate is functionally complete in itself! 
Unlike the classical computers, the space of the possible quan-
tum operations is a continuous, when we express it through 
discrete set of operations, the cardinals are not completely iden-
tical. However, random quantum operations can be approximat-
ed through the use of several types of gates. The quantum gates 
are essentially quantum operators.  

 
In this research is determined the quantum gate acting on the 

k-qubit as 2k × 2k unitary matrix, which performs a transfor-
mation of the system. When the gates are applied for a qubit 
system, the vector of the system state is multiplied by the matrix 
of the gate to obtain the new vector of the state. Since the gate is 
a unitary matrix, this means that the calculation is reversible - 
the correspondence between the inputs and outputs is one to 
one.  

 
Similarly to the classic computation there is a universal set of 

elementary gates, which is sufficient to satisfy all computational 
needs [1, 2, 3, 4]. In this formal research will be reviewed the 
basic quantum gates and will be explained why they form an 
universal quantum gate. This particular set of gates will be exam-
ined because some of the difficulty simulating quantum concepts 
are distributed evenly between those gates. The CNOT gate con-
trols the measurement and pairing, the Hadamard gate controls 
the superposition, and the phase gate controls the interference.  

 

2    THE UNIVERSALITY 
Theoretically will be proven that CNOT, Hadamard and 45° phase 
gate are sufficient in order to compose an universal quantum 
gate.  
 
CNOT - This is a 2-qubit gate, which inverts the second qubit, if 
the first is set to |1⟩. The CNOT gate performs the transformation 
CNOT |10⟩ = |11⟩ and CNOT |11⟩ = |10⟩.  
All other states at the input remain unchanged. 
 

СNOT =  �

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

� 

 

CNOT is applied on two qubits: target and control. If the con-
trolled qubit is 1, the target qubit changes from 1 → to 0 and vice 
versa. If the controlled qubit is zero, nothing changes. It is im-
portant to underline that the gate works even when the qubits 
are paired or in a superposition: The target qubit changes only in 
the parts of a superposition in which the controlled qubit is set. If 
CNOT is applied on q1 in q2 (this means that q1 is the controlling 
qubit, and q2 is the target one). If the state of the system is  
| q1 = 0, q2 = 0⟩ - | q1 = 1, q2 = 1⟩  
after CNOT on q1 in q2 the state changes to  
| q1 = 0, q2 = 0⟩ - | q1 = 1, q2 = 0⟩. 
 
The role of CNOT in this case is to express the interaction. With-
out it, this would be just a series of single-qubit computations. 
Through this gate may be implemented a number of classical 
simulations, regardless of whether the qubits are paired or not.  
Logically this gate could be simplified by replacing a CNOT gate 
with a CCNOT gate. This would allow all classical simulations to 
be implemented through one gate. The CNOT gate is beneficial 
also from a philosophical point of view, because the understand-
ing of its logic is the basis of understanding the quantum meas-
urement. The measurement of a qubit has absolutely the same 
effects on the quantum computations as CNOT. Whether that 
eliminates the problem with the measurement in the quantum 
mechanics or not it is controversial to say. Toffoli - This is a 3-
qubit gate, which inverts the third qubit, if the first and second 
are set to |1⟩. The TOFF gate performs transformation TOFF 
|110⟩ = |111⟩ and TOFF |111⟩ = |110⟩. All other states at the 
input remain unchanged. 
 

TOFF =  

⎝

⎜
⎜
⎜
⎜
⎛

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0⎠

⎟
⎟
⎟
⎟
⎞

 

 
Hadamard - This is a 1-qubit gate, which creates a unbiased 
superposition of the states |0⟩ and |1⟩. The Hadamard gate car-
ries out the transformations:  
 
𝐻𝐻𝐷|0〉 =  1

√2
(|0〉  1

√2
(|1〉 

𝐻𝐻𝐷|1〉 =  1
√2

(|0〉 - 1
√2

(|1〉 
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It should be taken into account that the Hadamard gate can be 
applied to higher dimensional qubit spaces by tensoring of single 
qubits. Hadamard gates. 
 
𝐻𝐻𝐷 = 1

√2
 �0 1

1 0� 
 
If the target state of the qubit is |0⟩, the application of the Hada-
mard gate changes the state to |0⟩  |1⟩. If the target state of the 
qubit is |1⟩, the states change to |0⟩ - |1⟩.  When the qubit is in a 
superposition, the function is applied separately to each part of a 
superposition.  
 
For example when the issue for the normalizing factor 1

√2
 is put 

asied, in order to asses H1 (|0⟩- |1⟩), H is applied to each part as H 
(|0⟩) -Н (|0⟩), which extends to (| 0⟩  | 1⟩) - (| 0⟩- | 1⟩), and is 
simplified to 2 | 1⟩, which in fact is | 1⟩. The role of the Hadamard 
gate in this case is to create a superposition. Without this gate 
the classical simulations can not be performed because the func-
tionally incomplete gates can not cause interference. 
 
45° Phase gate 
Similarly to Hadamard, the phase 45° gate is applied on a single 
qubit. But it has much more simple function: change of the rela-
tive phase between the amplitudes of the qubit states |0⟩ and |1⟩. 
This is achieved by keeping the state when its value is 0, and 
multiplication of its amplitude by 1 i

√2
 when the value is 1. Exam-

ple: We can evaluate P45° (|0⟩- |1⟩), through application to single 
components is obtained P45° (|0⟩) - P45° (|1⟩), which is estimated 
to be |0⟩- 1 i

√2
|1⟩. The role of the phase 45° gate is to control the 

interference. The Hadamard gate creates the interference, while 
the phase 45° gate shall assess whether the interference is con-
structive, destructive or undefined. This is actually very im-
portant, because if a 45° phase gate is removed from the circuit, 
or is replace with the phase 90° gate, at the end, the possible 
classical simulation is limited to the so-called stabilizing circuits 
for quantum simulation. 
 
Proof 
First it is defined that the Hadamard and 45° phase gates can 
approximate each single qubit operation. This is in fact easily 
provable, since each single qubit operation corresponds to a 
rotation in 3D. The Hadamard operation is a rotation of 180° 
around the XZ axis, which is equivalent to 90° rotation around X, 
then around Z, then around the X axes. The phase 45° gate repre-
sents a 45° rotation around the Z axis.  
 
The experiments carried out by the developed from the author of 
this report quantum simulator [10] show that the combination of 
these two rotations allows the performance of all other rotations. 
It is possible to be obtained an approximation on each target 
rotation, although to achieve this it may be necessary to make a 
composition of a longer series from the described two rotations.  
 
On second place, the quantum operations must be factored in 
single qubits operations and CNOT gates. Each quantum opera-
tion corresponds to a rotation of an unitary matrix whose action 
is similar to the extraction of scalar values from a matrix, swap- 

1 Hadamard gate 

ping and adding rows upon inversion with Gaussian2 elimination. 
These simulations may prove to be with exponentially many 
factors because these matrices are with exponential size, but can 
always be factored. The factoring creates an exponential increase 
of the number of operations, but the same exponential increase 
occurs also at the classical circuits. Classically, these are 22N op-
erations, which receive the NP bit at the input and return one bit 
at the output, and there are only ≈GG ways to link together the G 
NAND gates. This exponential increase would have been even 
bigger upon quantum computations.  
 
Each quantum operation can be approximately simulated by 45° 
phase, CNOT and Hadamard gate.  
 
Measuring and pairing can be classically simulated through 
CNOT operations, creation of superposition and interference can 
be simulated through Hadamard operations, while the complex 
quantum interference can be simulated through phase gates.  
 
With the help of the small set of quantum gates, which have been 
defined can be created arrays, which to be applied consistently to 
the quantum system. Such an array of quantum gates is also 
called a quantum circuit. For example, if a 2-qubit system is given 
and a NOT gate is applied and after that a CNOT gate, then the 
resulting quantum circuit is {NOT, CNOT}. Therefore, the quan-
tum gates are the building elements of the quantum circuits. 
With this basis it is possible to be initiated the design of effective 
quantum circuits for performance of quantum walk in one and 
two dimensions. 

3 CONCLUSION 
Each quantum operation can be approximately emulated 
through 45° phase operator, CNOT 
tor and Hadamard operator. The measurement and the entan-
glement are emulated through CNOT, the superposition and 
interference are emulated through Hadamard operations, and 
the complex interference is emulated through 45° phase opera-
tor.  
 
The universal quantum operators, can emulate any other opera-
tion.  
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